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Introduction / Summary 

• The polarization of a “probe” laser beam can be modified by optical mixing 

with another “pump” laser beam in a plasma 

 

• The polarization modification arises from modifications of the beam’s 

amplitude (energy transfer), phase (plasma birefringence) – or both 

 

• This could be applied to the design of novel photonics devices with 

applications such as ultra-fast polarization switching, in-situ polarization 

smoothing etc. 

a) plasma polarizer: 

• w1 = w0 + kbcs	

• extinction ratio: exp[-2Im(g)a0
2k0L]	
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The coupling between two lasers with arbitrary 

polarizations is described using Jones formalism 
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Definitions (E-fields’ envelopes): 

• a0 = “pump” beam 

• a1 = “probe” beam 

• p0 = projection of a0 in (p1, s1) 

(probe’s plane of polarization) 

 

Jones formalism: 
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Maxwell equations + linearized Vlasov →  
¶z a1 = ig * p0 a1 p 0

¶z a0 = ig p1 a0 p1

g =
1

2

ce(1+ ci )

1+ ce + ci
sin(y / 2)tan(y / 2)where g is the plasma response to the beat wave: 

The problem is described by a system of four coupled equations (p&s  

components for each beam), coupled via the refractive index modulation 



The system can be analytically solved in the 

undepleted pump approximation (probe << pump) 

¶z a1 = ig * p0 a1 p 0

¶z a0 = ig p1 a0 p1

Undepleted pump: |a1(z)〉 , |a0〉 = constant  (|a1|
2≪|a0|

2)  

 equation for the probe: ¶z a1 =M0 a1
where  M0 = ig * p0 p0

(2x2 matrix) 

Solution for propagation from z=0 to z=L : diagonalization + exponentiation of M0  

a1(L) = R(-q0 ) exp[ig * p 0
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1.  R(q0) : rotation matrix by q0 (≣angle between p1 and 

p0): change of basis (p1, s1)  (p0,r0) 

2.  a1// is multiplied by exp[ig*|p0|
2k0L] , a1⊥ is unaffected 

3.  rotate back to (p1, s1) 
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The probe component a1// parallel to p0 is modified by the interaction 

(amplitude and phase, depending on whether g is complex or real) 



The nature of the probe modification (phase vs. 

amplitude) depends on the wavelength difference 

between pump and probe 
g 
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Im[g] 
Re[g] 

vb=(w0-w1)/|k0-k1| = phase velocity 

of the beat wave 

cs = plasma sound speed 
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unchanged  × exp[ig*|p0|
2k0L] 

Two notable regimes: 

• vb~±cs: g is purely imaginary, ⇒ amplitude of a1// is modified (pump-probe energy 

exchange) 



The nature of the probe modification (phase vs. 

amplitude) depends on the wavelength difference 

between pump and probe 
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Two notable regimes: 

• vb~±cs: g is purely imaginary, ⇒ amplitude of a1// is modified (pump-probe energy 

exchange) 

• vb~0: g is purely real, ⇒ phase of a1// is modified (induced- plasma birefringence) 
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vb=(w0-w1)/|k0-k1| = phase velocity 

of the beat wave 

cs = plasma sound speed 



w1=w0±|k0-k1|cs (“non-degenerate wave-mixing”): 

energy transfer between the pump and a1// 
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After propagation distance L: (assume linearly polarized probe) 

• amplitude is modified from a1(0) to a1(L): 

 

 

• polarization direction is rotated from q1(0) to q1(L): 

p1 

s1 p0 

a1(0) 

a1(L) 

q1(0) 

q1(L) 

q1(L) =q0 - atan e
-Im(g )p0

2
k0L tan q0 -q1(0)( )é

ë
ù
û

a1(L) = a1(0)exp -Im(g )p0

2
k0L

é
ë

ù
û

Consequence: cross-beam energy transfer between arbitrarily polarized beams 

can lead to polarization rotation 



Application of the non-degenerate case (vb~±cs): 

plasma polarizer 
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Example: 

• typical ICF/HED laser/plasma conditions: Te=3 keV, Ti=1 keV, l0=351 nm, ne=0.1nc 

• pump intensity I0=1015 W/cm2, propagation length = 300 mm 

•  extinction ratio = 10-5 

• Pick vb=-cs (energy transfer probe  pump): a1// component vanishes 

• ⟺ polarizer along r0 with extinction ratio m=exp[-2Im(g)|p0|
2k0L] 

• most efficient configuration: s-polarized pump (p0=a0) 
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Non-degenerate wave-mixing can be used to design very efficient plasma 

polarizers 
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w0=w1 (“degenerate wave-mixing”): no energy transfer but 

phase retardation of a1// w.r.t. a1⊥: plasma birefringence 
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 × exp[ig*|p0|
2k0L] 

If w0=w1: Re[g]>0, ⇒ a1// is retarded with respect to a1⊥ 

 The pump’s electric field breaks the optical isotropy of the plasma, similar 

to anisotropic binding forces between atoms in a crystal 

 

Fast and slow refraction indices: h fast =h0 = 1-
ne

nc

hslow =h0 1+g cos(y / 2)p 0
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A “pump+plasma” system can act like a birefringent medium for a probe 

laser beam 



Application of the degenerate case (w0=w1): plasma 

waveplate 
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Example: 

• Te=3 keV, Ti=1 keV, l0=351 nm, 

ne=0.1nc , I0=1015 W/cm2 

• s-polarized pump, probe linearly 

polarized at 45° from the pump 

•  Ll/4~500 mm 

• Polarizers and wave-plates  constitute the basic building blocks for other 

active or passive optics devices (rotators, Pockel cells etc.) 

• In a plasma: response time can be ultra-fast (sub-ps) 
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Interaction length required for a quarter (l/4) or half (l/2) plasma waveplate: 

Note: if ZTe/Ti≫1 , then L∝Te/(Ipump×ne) 



Conclusion / Summary 

• non-degenerate wave-mixing with w1=w0±|k0-k1|cs: amplitude modification of 

a1// (probe component parallel to the pump); application: plasma polarizer 

 

• degenerate wave-mixing (w1=w0): the phase of a1// is retarded w.r.t. a1⊥ (plasma 

birefringence); application: plasma waveplate 

 

• such plasma devices are resistant to high laser fluxes (unlike crystals) and 

can have ultra-fast response times (sub-ps) 

a) plasma polarizer: 

• w1 = w0 + kbcs	

• extinction ratio: exp[-2Im(g)a0
2k0L]	

k0	

a0	

k1	

a1	

L	

a0	

k0	

k1	 L	

b) plasma waveplate: 

• w1 = w0	
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